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ABSTRACT 

The  problem of control of the  ultra-long  waves  in  numerical  prediction  is  considered.  Sections 2 4  contain  a 
discussion of the one-level  forecasts. It is shown that  the  vertical  variation of the  horizontal  wind  and  the  static 
stability  are  the msain factors  in  determining  the  value of divergence a t  500 mb. An independent  estimate of the 
size of the  term  governing  the  ultra-long  waves  in  the  atmosphere  agrees  well  with  the  one  determined by 
Cressman  on an empirical  basis. 

Section 6 points  out  that  any  two-parameter model has  to  contain  an  effect  similar  to  the  one  contained  in  the 
one-parameter  model  controlling  the  ultra-long  waves. A modification of a  two-parameter  model is made  in such 
a  way that  the  ultra-long  wares  are  controlled. 

Section 6 describes a perturbation  analysis of the  model  developed  in  Section 5 in  order  to  investigate the effect 
of the modification  also  on  the  shorter  waves. It is found  that  a  certain  stabilization of the  shorter  waves 
is produced.  Baroclinic  instability  and  growth  rate  are  investigated. 

Sections 7 and 8 contain a justiflcation of certain  approximations  used  in  the  earlier  sections  regarding  the 
vertical  variation of static  stability  and  the  profile of vertical velocity. 

1. INTRODUCTION best forecast. This procedure  may  not  lead to  the proper 

The Joint Numerical Weather  Prediction  Unit  has  re- 
cently improved the 500-mb. barotropic  forecasts by 
paying special attention  to  the behavior of the very  long 
atmospheric waves. The non-divergent bardropic fore- 
casts were first empirically  corrected  by Wolff [ M I ,  who 
used the observed fact  that  the very long atmospheric 
waves do  not  change  either position or  ampltitude  to  any 
great extent  from  day  to  day. He therefore forced the 
waves with  wave-number one, two, and  three  to be sta- 
tionary ‘throughout  the  forecast period. Shortly  alter, 
Cressma,n [6] used a special case of Phillips’ [13] two- 
layer model to show that a model atmosphere  consisting 
of two homogeneous layers,  where the motion in  the lower 
fluid is  parallel to  the  contour of the  interface,  and where 
the motion in  the  upper fluid is negligible, would decrease 
the retrogression of the very  long  atmospheric waves to a 
considerable extent. The forecast  equation used by Cress- 
man is the same as  the one used by  Bolin [2] in  his so- 
called tropopause model. Both of these authors  had  dif- 
ficulties in ‘the  determination of the  proper  value  for 
certain constants appearing  in  the prognostic  equation, 
mainly ‘because a model atmosphere  consisting of two 
homogeneous layers  is  rather difficult to  “translate”  to  the 
real atmosphere. Cressman decided therefore to deter- 
mine the value of the coefficient  by computing a number 
of forecasts on the same data wilth different  values of the 
coefficieat and  then choosing the coefficient that gave the 

value of the coefficient, became  a  minimization of forecast 
height  errors  with  respect b the coefficient might  tend to 
compensate for correlated, but physically  unrelated  er- 
rors, as was also mentioned  by  Cressman. 

I n  view of the  situation mentioned above it seems to be 
in  order  to  try  to  formulate  (the barot,ropic,  divergent 
model in such  a way that  the value of the constants  can 
more easily be related  to  the  real atmosphere. Sections 
2 t,hrough 4 of this  paper  are devoted to  this purpose. 

An analysis of baroclinic instab’i1it.y and especially of 
the phase-speed of waves in a  baroclinic atmosphere, as 
for instance  made by Eliassen [9], shows that  the phase- 
speed for  large values of the wavelength  approaches the 
Rossby speed for a  non-divergent atmosphere. For large 
values of the wavelength one actually  obtains two solu- 
tions for the phase-speed. One of them is not  likely to 
be observed in  the atmosphere because it corresponds to a 
situation  where the  temperature wave is  out of phase with 
the pressure,  corresponding  (to warm troughs and cold 
ridges. The other  solution is  the one approaching  the 
Rossby speed. 

This result shows that one will  find  about the same dif- 
ficulties as in  the non-divergent  barotropic model with 
respeot to  the  ultra-long waves, when one integrates  a 
baroclinic model of the usual type over an almost hemi- 
spheric region. It is  therefore a necessity to correct the 
baroclinic  forecast  equations in such a way that  the 
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retrogression of the  ultra-long waves is reduced to a con- 
siderable extenit. Section 5 describes a  simple  two- 
parameter model where this effect is  included. 

Recently Burger [3] pointed out  that  the  vorticity 
equation loses its  prognostic value when ‘the wavelength is 
of the same order of magnitude as ‘the  radius of the  earth. 
As long ‘ a s  we base our forecast,s  on the  vorticity  equation 
we can therefore  probably  not  do  anything  better  thaa 
express the quasi-stationary  character of the  ultra-long 
waves. The  two models presented  here do  therefore  not 
claim to have  any  skill in  the regime of the  ultra-long 
waves. The problem  which has been atkacked is to  in- 
corporate effects in barotropic  and b’aroclinic models 
which control the  long waves and  at  the same time  to  in- 
vestigate the changes which may be caused by such effects 
on the  shorter waves. 

2. DERIVATION OF THE  PROGNOSTIC  EQUATION 
IN  THE  BAROTROPIC  CASE 

I n  the  derivation we shall consider the  vorticity  equa- 
tion in  the form 

where V is the  horizontal wind  vector, 5 is  the vertical 
component of the  relative  vorticity, v=[ -t f ,  f is the  Cori- 
olis parameter, and w=dp/dt the  vertical velocity in 
a  coordinate  system with  pressure  as  the  vertical co- 
ordinate. 

This  form of the  vorticity equation,  where the value of 
the Coriolis parameter  in  the divergence term is a stand- 
ard value, f=f o, is consistent  with  certain  general integral 
constraints, as shown  by the  ‘author [17], when the  hori- 
zontal wind in  the  vorticity advection  term is non- 
divergent). The derivation of the  barotropic  vorticity 
equation is  usua#lly based upon the equivalent-bsarotropic 
atmosphere (Charney [ 5 ]  ) , where the  horizontal wind 
in ithe complete atmosphere  is assumed to  vary vertically 
in  strength,  but  not  in  direction. I t  is  then shown tha!t 
the simple barotropic  vorticity  equation  can be applied 
to  the  vertical mean flow in  the atmosphere  provided t.he 
effect of surface  pressure  changes is neglected. The 
assumption 

V = A  ( p ) V *  (2.2) 

which  defines the  equivalent-barotropic  atmosphere  and 
where V* for  inshnce may be taken  as t,he 500-mb.  flow, 
will in general apply  with good accuracy  in  a  layer 
around the 500-mb. level, while the accuracy becomes 
smaller the  farther we are  from  the 500-mb. level. We 
shall in  the following  make use of (2.2)  only  in a thin 
layer  around  the 500-mb. level. Equation (2.2) expresses 
then, according to the geostrophic thermal wind  relation, 
that  the  thermal wind is parallel to  the wind  itself, or in 
other words t.hat the isotherms at  500 mb. are parallel to 

the  contour lines. The  last requirement is  probably  ful- 
filled to  the greatest  extent in  the mid-troposphere, while 
temperature advection  by the  horizontal  wind is greater 
both  higher  up  and lower down in  the troposphere, ac- 
cording  to observations. 

The equivalent-barotropic  atmosphere  is  usually treated 
without  any  reference to lthe thermodynamics of the 
atmosphere. If ,  however, the reldtion (2.2) is approxi- 
mately satisfied at least around  the 500-mb. level it must 
mean that  the local temperakure  changes to the largest 
extent  are compensated by  vertical velocities, a,nd that the 
adilabatic equation  therefore  takes  {the  form 

at the 500-mb. level. In (2.3) +=Sa is the geopotential, 
a the specific volume, and e the potentia1”temperature. 

The expression (2.2) applies actually  to  the distribution 
of the horizontal wind. If the horizontal wind is  assumed 
quasi-geostrophic, we obtain from (2.2) : 

The vertical velocity can  then be obtained from (2.3) 
in t’he form: 

dAldp  d+* 
u dt 

w=-- -. 
We shall further  in  the thermodynam.ic  equation (2.5) 

replace the geopotential +* by a stream function #* 
satisfying the relation 

+*=-. +* 
f o  

The implication of this  assumption  in  the thermody- 
namic  equation,  and  only  here,  has been discussed by 
Phillips [15]. Introducing  (2.6) in (2.5) we obtain: 

(2.71 

I n  order  to obt.ain the  prognostic  equation  from (2.1) 
it  is now necessary to  evaluate d w / b p  from  (2.7).  Let us 
assume for simplicity that d A J d p  is a  constant. The main 
problem is  then  in which way the vertical  stability u varies 
with  pressure. It will be shown (section 7) that a varia- 
tion of the vertical  stability expressed by the formula 

u=u*($)  P=500 mb. 
- 2  

describes the vertical  variation of temperature  in a mean 
atmosphere with good accuracy. I n  (2.8) (T* is the static 
stability at  500 mb. The accuracy is especially good 
around 500 mb., because the  vertical  stability at 500 mb. 
is used to fit the  distribution (2.8) to  the atmosphere. 

From (2.7)  and  (2.8) we obta.in then,  provided A ( p )  
varies  linearly  with  pressure : 
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which, inserted in (2.1), leads  to  the prognostic equation: 

- (V2+*- &*) +J(+*, ??*) =o (2. IO) b 
bt 

where 

3. DISCUSSION OF THE  PROGNOSTIC  EQUATION 

The Helmholz  term appearing  in (2.10) is  in  this  for- 
mulation due  to  two  factors,  the increase of the  horizontal 
wind with  height  and  the decrease of temperature  with 
height in  the atmosphere. Both of these  fac'tors  are well 
known from observations, and it is  therefore somewhat 
easier to  determine  the  proper  value of p to be  used here 
than in Bolin's and Cressman's  prognostic  equations. I n  
order to  determine p we need a value for U* and  for 

The value  for m* may be determined  from ithe expression 
( - d u d ? ) ) .  

( 3 . 1 )  

where E is  the gas constant, yd the  dry  adiabatic  lapse  rate, 
and y the local lapse d e .  

I t  has been the general  experience  among  people  work- 
ing with  models  in  numerical  prediction that t,he standard 
atmosphere is too unstable. Using y=0.5" C. per 100 m., 
which corresponds to about, 80 percent of in the standard 
at,mosphere,  we  obbtain : 

0*=4.2 MTS units.  (3.2) 

We have already assumed that A ( p )  varies  linearly 
with pressure  in the  derivation of (2.9). We may  now 
obtain d A / d p  by  noting  that A ( p *  ) =1 according to (2.2) 
a id  further assume that A ( 2 P )  =0.2, which  means that 
the surface  wind  is  about 20 percent of  ithe  500-mb. wind, 
an assumption used, for instance, in  the  incorporation of 
the mountain effect in  the  barotropic model. This gives : 

-dA/dp=O.g/P= 16X (3. 3) 

pr 1.5 X ( 3 . 4 )  

The prognostic  equation (2.10) may now be compared 
with Cressman's prognostic  equation  reproduced  here 
withouit the term accounting for  the mountain effect: 

and 

-(v~$*--p at b 2 +* +*)+J(p,??*)=0 ( 3 . 5 )  

In this  equation  the  symbols  have  the  same  meaning as 
before. , $* is a representative mean value of the &ream 
- 

function obt.ained through  the  solution of the  bdance 
equation,  while p is  the coefficient, which  actually  is equal 

to 1 - 1 -- where h is t.he height of the  interface, a the 

height of the BOO-mb. surface,  and p' and p t.he densities of 
the  upper  and lo'wer fluid. We  are now in  the position to 
evaluate  the  value of p, which would correspond  to  the 
estimate of p given in (3.4), if we linearize  the coefficient 
in ( 3 . 5 ) .  We  obtain  then : 

/"z( E') 

This  independent  estimate of p is about equal  to the 
highest  value of p used  by Cressman  in  his empirical 
determination of the coefficient. Cressman  varied p from 
0 to 8. It will be seen that p is inversely  proportional  to 
m*. A value of (T* higher  than  the one used here cor- 
responding  to y=0.5"C.,/100 m.  'is  probably  not possible 
as a mean  value for the atmosphere. If  we therefore 
accept this  value of (T*, it is found  that values of p less 
than 8 can be obtained  only  with - d A / d p  smaller than 
the  value used here. It is interesting  to  note  that a value 
of p=4, which is  the  value used at the moment in  the 
operational  forecasting,  would  correspond  to - d A / d p  
=0.4/P. This would  mean that  the  surface wind  should 
be about 60 percent of the 500-mb. wind,  which  sounds 
unreasonable. On t.he basis of this discussion one is 
therefore  tempted  to conclude that a value of p somewhat 
greater  than 4 ought  to be used. 

4. A SIMPLE WAVE ANALYSIS 

It is of interest to make a simple  wave  analysis of the 
prognostic  equat,ion (2.10) in  order to obtain a first idea 
of the influence which different  values of q will have on 
the  motion of long  and  short waves in  the atmosphere. 

Consider a st,ream function 

where the  superscript * now has been dropped and where 
U=constant is the zonal component of the wind. This 
stream. function will satisfy (2.10) provided t,he phase 
speed c satisfies the  relation 

In the  derivation of (4.2)B=dfldy has been considered as 
constant  and is evaluated a t  45O N. k=2?rlL, where L is 
the  wavelength. If N is the  number of waves around  the 
hemisphere,  i.e., 23rR cos q = N .  L, we may also write 
(4.2) in the form. 
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FIGUBF. 1.-Phase velocity as a function of number of u\-a;~% 
around  the  hemisphere.  The  solid  line  corresponds  to g=0, the 
dashed  line  to q= (3/4)10"a and  the  dotted line to g =  (3/2) lo-=. 

control of the  long waves we have  therefore i t 0  investigate 
whether  the  phase-sped  and  the  instability  criteria  for the 
modified model are  left essentially  unchanged, or if they 
are changed, we have to investigate  whether the change is 
in a direction  which  is  supported by observations or 
experience. 

One of the results in  the first sections of this paper is 
that  the behavior of the  ultra-long waves is sensitive to 
even very  small divergences. We m.ay therefore expect 
that if we introduce  a  mean divergence  different from zero 
in  a  baroclinic model we will be able to control the ultra- 
long waves. The  main  problem is to relate  the mean 
divergence to  the  parameters  which  carry  the history of 
the flow. It means, for a two-pa'rameter  model of the 
usual  type,  to a height  and  a thickness. I n  the following 
simple two-parameter model we shall try to introduce such 
a net  divergence in  the vertical  direction by relating ithe 
vertical me'an divergence to  the flow parameters  in  a way 
similar to the one used in  the  bardropic case  treated 
earlier  in  this  paper. 

The prognostic  equations we are  going  to use will be the 
vorticity  equation  in the form : 

%+v V ( i - f f )  = f o  d2, b W  bt 

and the adiabatic equa.tion 

The values of e shown  in  figure 1 in m. sec.-l are com- 
puted for U=20 m. sec.-l, (p=45" N., and for p=0, We shall in the following denote  the 200, 400, 600, 800, 

to approximatdy ' = O J  4' and It is seen that Applying equation (5.1) to the 400 and 800-mb. surfaces 

the reierogmion  further  than  the  operational value. For with p= 4o cb. : 
wave number 1 the phase-velocity  changes from about 

where fo is a  standard value of the Coriolis parameter. 

(3/4) x 10-12, land (3/2) x 10-12, which correspQnd 1000-mb. surfaces with  subscripts 0, 1, 2, 3, and 4, 

q= (3/2) x 'O-'', the in this re'duces and  approximat,ing &/ap by finioe differences we ob&h 

-19 m.  sec.-l to a b u t  - 11 m. sec.-l, while oa  the  other 
hand c is changed  from 12 m. sec-l to  10 m. sec.-l for 
N=8, corresponding to 'a  wavelength of a b u t  3500 km. 
It is  therefore  likely that 'a change of p from  the present 
value, (3/4) X le1', to Ithe value determined here, 
(3/2) X 10-l2, would not  change  the  foremst  appreciably, 
except for  the  ultra-long waves, which  in  fact  are 
betrter forecasted by the  greater value of p, according to 
Crewman. 

5. THE  BAROCLINIC  CASE 

-+v,-V(i-l+f)=p a i-1 f o  (%-Wo) 

"+V,' b5-3 bt vcr,+n=,- f o  ( % - 4 .  (5.4) 

bt (5.3) 
and 

We  shall  in  the following apply  the  approximate 
boundary  condition w4= 0, themby  disregarding mountain 
effects in  the model. The pra,ctice  before has been to set 
wo=O. This means that we assume khat the vertical 
velocity has a zero point somewhere between the two zero 
points at  the  surface of the  eart,h  and  'at  the  top of the 
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assume that  for  my  quantity a we have 

and  we shall further  introduce  the  notation: 

1 
2 a’=- (al-Cx3). 

(5.5) 

Using this  procedure we obtain: 

s + v 2 .  v(S;+f)+V‘ * v + - - z p w o  f o  bt (5.7) 

By applying the  adiabat,ic  equation a t  600 mb. t’he 
value for w2 may now be obtained in the usual way: 

with 

2f o2 
u,P2- 

q=-“ constant. (5.10) 

The value of wo/2P may  be  related to the  parameters 
characterizing the flow in  the following way. Let us 

i apply the  continuity  equation a t  400 and 800 mb.  and 
obtain 

8. V1=-(dw/bp)1=--- w2 -a0 

P (5.11) 

v . v3= - (bw/dp),=p- w2 (5.12) 

Adding these two equations we obtain: 

v .  v --’ 
2-2P 

w0 

We have  on the  other  hand: 

(5.13) 

(5.14) 

- 
where v - V is the vertically  averaged divergence in  the 
layer between 200 and 1000 mb. According to (5.13) and 
(5.14) V -  V2 represents  within the approximations of t’he 
model the vertically  averaged divergence. Due  to  the 
relation (5.13) we are  in  the position to express wo/2P by 
a procedure similar to  the one used in  the barotropic case. 

In the incopporation of the mean divergence in  the two- 
partmetel. model we should  have in mind that we are 
first of all trying  to  control  the  behavior of the ultra-long 
waves. In  the first  approximation - we are  probably  therc- 
fore allowed ts express v - V in  the same  way as  in  the 
barotropic case ;.e., 

with 
fo2 d d A  

r = 2 ( g ) 2 & *  

(5.15) 

(5.16) 

With fo= loT4 sec.”, u2=3 MTS units, dA/dp=--’, 0 8  
P 

and ( d ~ l d p ) ~  computed  from  a  formula corresponding to 
(2.8) we arrive at  value of 

r=2.22X10-l2.  (5.17) 

The assumpt.ion (5.15) means that we assume the  ultra- 
long waves to  have  a  small tilt vertically  around level 
2;  i.e. 600 mb. It is realized that  this assumption needs 
further investigation. In a paper by Eliasen [lo] it is 
shown that  the tilt of the  long waves on  the seasonal 
mean charts  is  not insignificant in  the lower part of the 
troposphere. On t.he other  hand,  a  similar  Fourier 
analysis of the  long waves at  the levels 800, 700, 500, 300, 
and 200 mb. on a  few  individua”1 days  has  in no case shown 
tilts  nearly  as  great  as those found  on  the  normal charts. 
The  assumption (5.15) may therefore  in  many cases be 
considered as a good first approximation. 

The expression (5.15) could be introduced  directly  in 
(5.7) and  (5.8). However,  diagnostic  computations of 
t.he vertical pro8file of the  vertical velocity described in 
section 8, show that O,,(<W~. For simplicity we shall 
therefore neglect the second k r m  on %he right  side of (5.8) 
in  comparison with  the first. This means  only that we are 
neglecting the mean  divergence in the  troposphere  in com- 
parison  with  the divergence at  400 or 800  mb., which 
represent the  upper  and lower p,arts of  ;the troposphere. 

Granted  that these approximations can be made we 
arrive  at  the  following modified forecash equations 

(5.18) 

The only  change which in fact  has been made is that  the 

tcrm r - b*2 has been added to the first prognostic equation, dt 
when we compare  with the  equations for a model where the 
mean divergence is zero. 

It is the  purpose of the following section to show that 
this  small modification will  control the ultra-long waves 
in lthe atmosphere and  further to illustrate  the changes 
which we may  expect in the short waves using (5.18) and 
(5.19) as  prognostic equakions. 

6. A  PERTURBATION  ANALYSIS OF THE 
BAROCLINIC  CASE 

Although  the final proof of the a.-@lidility of a set of 
prognostic  equations  always is the s u b f d  fol.ecasts 
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made from them ik is of interest to make .a simple  analysis 
of Ithe model in  order  to twt it as far  as the mathematical 
technique allows us  to  do it. The only test which  can be 
made by a  relatively  simple  mathematical  technique is a 
linear  perturbation  investigation. The two-parameter 
models where the mean  divergence  vanishes  have been in- 
vestigated in  this way by, for indtance, Eliassen [9], 
Thompson [ 161, and  Phillips [ 141. It is themfore of COIL- 

sidemble interest to make  a  comparative  study of the 
model described here  and  the  corresponding model with 
vanishing mean divergence. 

The two paramekers that characterize the model are  the 
s t r e w  functions +z and +'. Let these [be !described [by 
the  relations 

+2(z,y,t) = -Uzy+J2etk(z"c1) (6.1) 

where Uz and U' are  constants, &2 and $' are  the ampli- 
tudes, k = 2 r l L  is the wave number,  and c is the phase- 
speed (wave velocity). 

Inserting (6 .1)  and (6 .2)  into (5 .18)  and (5.19) one finds 
that +2 and +' are solutions to  the prognostic  equations 
provided 

. :: ' 

For any  quantity a the superscript * means 

Further 

D = [ ( l + q * )  r* U,+(p*"r*) @*I2 
I .  - 4  ( 1  +r*) (q*2-  1)U'2.   (6 .5)  

I t  should be mentioned that  the corresponding  formula 
for the usual two-parameter model with  vanishing sriean 
divergence simply may be obtained by  putting r*=d .  
This simple relation  makes a comparison between the two 
models fairly easy. , I  

As we are here especially interested  in  the  ultra-long 
waves we shall f i s t  investigate  what  happens when 
k+O (L-+a).  Considering the  three  'terms !in (6 .3)  we 
find directly that 

1 

We find therefore that 

if the plus sign is chosen 
lim c= (6.7) 
%+O if the minus sign is chosen 

The  result (6.7) shows that  both of these  solutions re- 
main  finite for k-0. The  interesting solution  is the one 
corresponding to  the minus sign. With  the numericbl 
values chosen here we find for the  latter solution 

ck=O= -p / r=  -7.2 m.sec:' (6.8) 

as compared to C&O= - 03 for r=O corresponding to a 
vanishing  mean divergence. We may therefore conclude 
that  the model controls the ultra-long waves in  the sense 
that  the retrogression is greatly reduced. 

Next, we shall  investigate  in which way the baroclinic 
instability  is being changed by  the  introduction of a mean 
divergence. Unstable  solutions  are  found  in cases where 

D<O (6.9) 

From  the expression (6 .5)  for D it is seen that only 
stable solutions are possible, when 

we  find that p*<l ,  if L < 3 . 1 X  lo3 km. Consequently dl  
waves with  a  wavelength  smaller  t,han 3100 km. are stable. 
This  result  is  the same as for  the model with vanishing 
mean divergence. 

Unst.able  solutions are possible if L is  greater  than this 
critical  wavelength. The division between the unstable 
and  stable  region may be found by equa,timng D to zero. Ii 
is seen imme'diately that a  certain difference now  appears 
between the models with  and  without mean divergence. 
I n  the case of no mean divergence the division bet,ween the 
st.able and unstable  region is given by a  single relation 
between the models with  and  without mean divergence. 
However, when we have  a mean divergence the zonal wind 
U ,  also enters  into  the  relation.  By  inspection of (6.5) it 
is seen that  the  greater  the velocity U ,  is, the  greater U' 
has to be in  order  to  create indtability. This relation is, 
illustrated  in figure 2, where the  critical vertical, wind. 
shear ( d U / d z ) ,  expressed now in  the  unit in. sec.-l  k.rn.-& 
is  plotted as a  function of wavelength in  units of thousands 
of km. It is seen that Ithe curve for U,= 20 m. sec-l  lies 
higher  than  the one corresponding to U,= 10 m. sec.". 
The curve  corresponding to no  zonal velocity, U,=O m. 
se.c.-l, is also drawn as representing an extreme case.  The 
dashed  curve in figure 2 represents (dU/da)  as a function 
of wavelength for  the model with  vanishing mean diver- 
gence. This curve is obtained from (6.5) by putting 
r=O. 
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Considering first Ithe ultra-long waves  we find that they 
are  closer to  an unstable situation  in  the model with mean 
divergence. However, disregarding t,he  case where 
U ,  = 0 as  an extreme case,  we  find that vertical  wind shears 
as  obiserved in the atmosphere would never  make khese 
wves unstable. We may  theref ore conclude that we have 
obtained a considerably  reduced  retrogression of ultra- 
long  waves without  introducing  any  instab'ility  in  this part 
of the spectrum. 

Turning our attention  toward the. smaller  wavelength in 
the spectrum we find that t.he introduction of a mean 
divergence in t,he model changes tlle instability  to some 
extent. \Ve find for instance with  the value of the static 
stability chosen here that  the wiavelength of maximum in- 
shbility  is  around 4000 km. in  both models. However, 
in the model wit,hout mean  divergence a vertictl  shear of 
only 1.6 In. sec.-l km.-l is necessary to produce instability. 
The corresponding  figures are about 3.1 and 5.8 111. sw." 
km.-l for U, equal to 10 m. sec.-l and 20 m. sec,.-I, respec- 
tively. Briefly, we may therefore conclude that  the  ~7a.y 
in which we have  introduced  the mean divergence into the 
model tends to stabilize tlle short.er waves somewhat. 

It is ;L general  impression that n tmo-par:meter nloclel 
witlwat, mean divergence will develop pressure systems too 
much in cases when they  actually  are deepening. From 
the result of the  instability  analysis made here it is seen 
that a model with  mean divergence will  counteract this 
tendency. Actual co'mputations will of course have to 
prove this  tenhtive conclusion. 

I t  has been pointed out by other  investigators  (Eady 
[8], Ch:wney [4]) that according to  linear baroclinic 
instability theory t.he westerlies should  constantly be in 
a shte of instability.  The  result  that  the  present model 
seems to decrease the  instability makes it interesting to 
invest,igate whether  this also is the case for  this model. 
Alt~hough our  instability  criterion is derived for flow 
pat,terns without  horizontal  shear we s l d l  nevertheless 
try  to compare the  results  with  the mean st):lte  of the real 
at,mosphere, The wavelength of maxilr~un~  instability 
seems to be around 4000 km. We  shall  therefore investi- 
gate the problem mentioned above by setting L =1000 km. 
i11d then computing  the  critical vertical wind  she:^ as a 
funct,ion 0% latitude usink values of 7", ; i.e., I' at 600 nlb., 
taken from a mean cross-section of fhe atmosphere. The 
critiGL1 wind  shear  may  then lie compared  with the actual 
w i d  she.ar in't.he mean cross-section. For this  purpose 
the mean cross-section prepared by Hess [ 111 llas been 
used. ' ,The  result of t,he computation is sho.vvn in figures 
8 a ' a l d  3b for winter  and summer, respectively. market1 
difference compared to  earlier  results  is  that  the meal1 
atmosphere is  stable  at almost all latit,udes. The only 
exception worth  mentioning seems to be north of 60" N. 
in summer, when the mean  atmosphere seems to be a lit,t,le 
unstable. 

Another  measure of the degree of instability which is 
present. in the model is  the time it takes to dquble the 
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FIGURE 4.-Diagram showing the vertical  wind  shear  necrssarg 
to double the  amplitude of a  wave  in 24 hours as  a function of 
wavelength for different values of the zonal  velocity U2. The 
dashed curve gives  the same  for the model with vanishing mean 
divergence. 

amplitude of a certain  perturbation.  This time will of 
course also depend on the wind  speed 77, in the model 
with mean divergence. Figure 4 contains  curves  giving 
the vertical wind  shear necessary to double the  amplitude 
in 24 hours as a function of wavelength for different 
values of U, in  the model with mean diverge.nce. The 
curve corresponding to  the same  condition for  the model 
with  vanishing  mean  divergence is  plotted for compari- 
son. This figure illustrates even more clearly than figure 
2, the decreased instability caused by the mean divergence. 
As an example taken  from figure 4 it may be mentioned 
that  for L=4000 km. and U,=20 m. sec.-I a vertical wind 
shear almost twice as large  as  in  the model without mean 
divergence is needed t.o double the  amplitude  in one day. 

Figures 5-8 give the phase speed e as a  funct.ion of 
wavelength in  the  two. models for different  combinations 
of U, and U !  The curves in figures 5a-8a were comput,ed 
from (6.3) with r=O, corresponding to no mean diver- 
gence, and  in  the figures 5b8b  with r#O. The main  fea- 
ture  in these figures is of course the  great difference be- 
tween the curves e- (corresponding to t,he negative  sign 
in  front of the  square  root) , assuring us that no excessive 
retrogression  takes  place in  the modified model. Figure 
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VIGURE 5.-(a) Phase-velocity as function of wavelength  for the 
model without mean divergence, ( b )  the  corresponding figure for 
a model with mean divergence.  The  dashed  line  in (a )  is the 
Rossby speed, while the  dashed  curve  in (b) corresponds to 
U'=O (no vertical wind shear). Parameters : U2=2O m. see. -', 
dU/dx=4 In. see.-' km.". 

6 illustrates a case where the modified model is stable for 
all wavelengths,  while the model without  mean divergence 
actually  is  unstable  in a band  from  about 3100 km. to 
about 7000 km. Note also in figure 6 that  the modified 
model is  unstable in a shorter  'interval than  the non- 
modified. This is, however, not  invariably so. When the 
zonal speed U ,  is  small  and dU/dz is large  the modified 
model will be unsta.ble in a broader  band of wavelength. 
This  fact is illustrated  in figures 7a and 7b, corresponding 
to U,=10 m.  sec." and dU/da=8 m. %.-I km.-l. Figures 
8a and  8b finally illustrate a case where, Uz=10 m. sec." 
and dU/dz=4 m.  sec.-l  km.-l. I n  these  diagrams  the band 
of unstable waves ,is about  the same. 

Figures 5a-8a cont,ain for comparison the speed of 
waves i n  a non-divergent,  barotropic  atmosphere,  the 
Itossby speed, while figures 5 b 8 b  contain the wave speed 
corresponding to, dU/dz=O. For  large values of the 
wavelength the speed for dU/dz  0 and dU/dz=O i r e  



MAY 1959 MONTHLY  WEATHER  REVIEW 179 

5or i c ,  m. sec." 

C+ 

"\.x-. C -  --- ""_" 
u' = 0 

1 1 1 1 1 1 l 1 1 1 1 1 1 1 1  
4 C. 8 10 I2 1 4  16 IS ZO U W. Zb 7.8 10 

-+ L x krn. 

FIGURE 6.-Same as figure 5, but  with  parameters : Uz=20 m. see.", 
d U / d x = 8  m. sec." km.?. 

about the same, while the speed of the waves in a  baro- 
clinic atmosphere is xomewhat~ larger  than  in  an atmos- 
phere with no vertical mind shear. 

7. O N  THE VERTICAL VARIATION OF STATIC 
STABILITY 

The evaluation of divergence in sections 2 and 5 depends 
to a large  extent on the vert)ical vnriat,io'n of static  stabil- 
ity. We have in tho earlier sections used a  variation 
described by (2.8), where the  static  stability  varies 
inversely to the  square of pressure. 

The tropospheric part of a mean at,mosphere is usually 
characterized by a  certain  lapse-rate, y= -aT /az .  The 
most straightforward way to conlpute the  static  stability 
a=-dlnO/ap as it appears  in models for numerical  inte- 
gration would therefore he to assume a certain  value for y 
and then compute the  variation of U. It is, however, of 
great convenience in many  problems to have u as a rather 
simple funct)ion of pressure. In  this section we shall show 
that a formula of the  form (2.8) will describe the vertical 
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FIGUKE 7.-Same as figure 5, but  with  parameters : Uz=10 m. see.", 
d U / d x = 8  m. see." km.-l. 

variation of temperature  in t,he  atmosphere to a good 
approximation. Let us m-ite (2.8) in  the  form : 

a=, 
a 
P 

where a is a  constant  determined in such a way that u at 
some pressure level, for instance 600 mb., is equal to a 
standard value  determined  from a mean atmosphere. Let 
us next try  to find T = T ( p )  corresponding to (7.1) by 
writ,ing 

we find that  the  ternperatwe has to  satisfy  the following 
differential equation of the  Euler  type 

dT R a 
d p  c, R P --- T+"O (7.3) 

The solution to (7.3) is 
a 
R2 

R 

T= T(p) =-c + Cp". 
- 

(7.4) 
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k m. 

FIGURE 8.-Same as  figure 5,  but  with  parameters : Uz=10 m. see.", 
d U / d z = 4  m. see."  km.". 

The  arbitrary  constant (7 can be determined by fixing 
the  temperature at  a  certain  pressure,  say, 600 mb. We 
obtain  then 

R 

T=T(p)=p2 c,+ T2-- c a ( ,)(d". (7.5) 

The  tempe,rature  distribution  given by (7.5) is plotted 
in figure 9 as t.he full curve. The dashed  curve  gives  the 
temperature  distribut.ion  in  the  st,andard  atmosphere, 
while the  dotted  curve  is  taken  from  Defant and Taba [7] 
corresponding to the  air mass bsetwe'en 'the po'lar-front  jet 
and  the  subtropical  jet. It is seen tha,t  the  three curves 
follow ea,ch other  quite closely, and we may therefore con- 
clude that  the assumpt,ion (2.8) represent,s mean conditions 
in  the troposphere in  the westerlies quite well. 

For use in t,he next se.ct,ion  we slmll need the  tempera- 
ture  distribution in  the stratosphe.re. For simplicity we 
shall assume that  the  stratosphere  is isothermal  with a 
temperature  corresponding to  the one  obtained from (7.5) 
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FIGURE 9,"Temperature as B function of pressure  correspo'nding to 
a variation of static  stability  inversely  proportional  to the 
square of pressure  (solid  curve).  The  dashed  curve  gives tem- 
perature as function of pressure  in  the  standard  atmosphere, 
while  the  dotted  curve  is  the  temperature as function of pres- 
sure  in  the  air mass between the  polar  jet  and  the subtropical 
jet as giren by Defant  and  Taba [71. 

0 1 0 0  200 300 400 500 600 700 800 5 '$ (PI 
- mb 0 7 

FIGURI~:  lO.-Static stability as a function of pressure  in tropo- 
sphere  and  stratosphere,  when  the  stability is inversely propor- 
tional to the  square of pressure. 

for p = p o =  200 mb. The sta,bilit,y will then vary in the 
following way : 

The  stability prolfile as determined  from (7.1) and (7.6) 
is shown in figure 10. It is seen that  the sta,tic  stability 
mries  greatly  in troposphe're and  stratosphere  and  further 
that  the  tropopause is characteterized by a jump  in stab'ility. 



MAY 1959 MONTHLY WEATHER  REVIEW 181 

8. SOME EXAMPLES OF VERTICAL  PROFILES OF 
THE VERTICAL VELOCITY 

In  section 5 we neglecte'd the  vertical velocity at  200 mb. 
in comparison wit.h that  at 600 mb,. As the 200-mb'. sur- 
face usually in  the weste,rlie,s is in  the stratosphere one 
can from ma8ny  considerations justify  this negleut. I n  
orde'r actually  to measure the  raiio between the two 
quantities certain dia.postic computations of the  vertical 
profile  of o have bleen performed.  These computaltions 
were made  with a moldel slightly different from  the one 
described in  this pa,per, because special attention was paid 
to the influence of the  stratosphere o'n the ve,rtical profile 
of U. The o-equation was 08bbtaine'd from  the vort,icity and 
adiabatic equations in  the forms 

and 

(8.2) 

by the  usual  procedure. In this  way we arrive at  an 
equation for the vertical velocity in the form 

with 

In  the troposphere we assume that 

and in the  stratosphere that 

The  functions A ( p )  and H ( p )  were in fact  det,trmined 
in such a way that  they  are consistent  with the assumption 
that Va=O (see Berkofsky [I]) and further such that  the 
wind is continuous at  p=p,=200 mb. (see fig. 11). When 
the approximat,ions (8.5) and (8.6) are  introduced in (8.3) 
we arrive a t  two equations, one for the tropospberc and 
one for the  stratosphere. 

As we are  here interested  in the vertical varia,t,ion of O, 

we shall  replace v 2 w  by --PO, where p is an inverse 
measure of horizontal scale. By doing  this we restrict 
ourselves to a  consideration of essentially one scale. P was 
here chosen as corresponding to t,he .vvsvele8ngtll of maxi- 
mum instability (L=4000 km.).  With  this rest.riction 
the two equat,ions obtained from (8.3) reduce to  ordinary 
differential equations in O, which {then  should bse solved 
using appropriate  boundary conditions. 
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FIGURI<: 11.-The functions &4 ( p )  and B ( p )  characterizing  the 
variation of the horizomntal wind  with  pressure  in  the model 
used for  diagnostic  computations of vertical velocity. The 
dashed  curve  in  the  lower fi,gure corresponds to the case  where 
A ( p )  is a linear  function of pressure. 

We  shall use 0=0 for p=O and p=p,=IOOO mb. 
Furthermore, we need an internal  boundary condition for 
p = p o =  200 mb., where the solution to the stratospheric 
equation  should be ma,tched  together  with the solution to 
the  tropospheric equat,ion. The level p=p0=200 mb. 
represents  in t.he present  considerations the tropopause as 
well as the level of maximum  wind. These two levels 
need not  in  all cases be the same in  reality,  but synoptic 
investigations (Defmt and Taba [TI) show that they are 
close to each other,  usually with  the level of maximum 
wind a little lower than  the tropopause. We way, 
therefo're, at lthe level p = p ,  apply a boundary condition 
rmtural for a discontinuit,y surface for stability.  Such 
boundary  conditions  have been treated by Lowell [12]. 
The  vertical velocity should be continuous at  the tropo- 
pause and  further should ( a ~ / b p ) s = ( b o J b p ) ~  which 
me,ans that  the first derivative  in  the p-direction should 
be continuous. These two conditions  have  therefore been 
applied at p = p o .  

The solution to  the two equations  obtained  from (8.3), 
with  the  boundary  collditions mentioned above, is quite 
laborious. For the  general case it has  not been  possible 
to find analytical  solutions. A numerical integrcation of 
the  two  equations has therefore been performed.  The 
method used in  the  numerical solutions has been the 
Runge-Kutta method,  which is most convenient in cases 
of internal  boundary condit,ions. Examples of solutions 
are  presented  in figures 12 and 13. In  these cases the 
stream  functions at 600 mb. and  for  the thermal flow 
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FIGURE 12.-The vertical  velocity as a function of pressure  in  dif- 
ferent  points of a baroelinic  wave,  where  the  thermal  stream 
function is lagging l/s of a wavelength  behind  the  stream  func- 
tion at 600 mb. (see  upper  part of the  figure).  The  dashed  curve 
in  the  upper  part of the  figure  gives  the  rertical velocity  through 
the  baroclinic  wave at 600 mb. 

FIGURE 13.-Same as figure 12, but  with phase-difference of of 
a wavelength  between  the  thermal  stream  function  and  the 
stream  function at 600 mb. 

between 800 and 400 mb. were specified as simple  sinus- 
oidal waves having a  certain  phase difference. Figure 
12 corresponds to  the case where the  thermal field is  lag- 
ging l/s of the wavelength  behind the field at  600 mb., 
while figure 13 has a phase difference of 1/4 of a wave- 
length. All  constants were computed for  eight different 
points. The  computation gave then  the  eight vertical 
profiles represented sin the figures, which ,in the  upper  part 
contain a schematic picture of the  temperature  and pres- 
sure wave and also  th'e  horizont,al  profile through  the 
baroclinic wave of t.he vertical ve1ocit.y a t  600 mb. On 
each of the profiles is given the level of maximum  vertical 
velocity and  the levels 'where w has a zero point different 
from those at  the boundaries. It should further be men- 
tioned that each profile is normalized in such a way that 
the maximum value is unity. 

Of import.ance for  the discussion in  the preceding sec- 
tions ure the following  features : 

(a )  A zero point for  the  vertical velocity appears some- 
what higher  than t,he level of maximum  horizontal wind. 
Ti10 pressures of the zero  points  vary systematically 
through  the wave,, and we may  state  that  the values of 
w obt.ained above the zero point  are extremely small. 

(b) o0 at 200 mb. is not exactly zero, but it is true that 
wO<<wz where w2 is at. 600 mb,. This characteristic justifies 
the  approximation  made  in sect.ion 5 .  

(c)  The non-divergent level varies systematically 
through  the  baroclinic wave with  the  result  that  this level 
does not, coincide 'with  a  pressure level. 

(d)  It is a. limitation  in  the  present calculation that the 
tropopause level has been assumed at  a constant pressure 
(BOO mb.). I n  reality we may  therefore  expect :L larger 
variation of the level of nondivergence. 

9. SUMMARY AND  CONCLUSIONS 

Sections 2-4 contain  a  derivation and discussion of the 
prognostic  equation for the 500-mb. flow where attention 
is focused on the  term which  controls the  ultra-long waves. 
I t  is shown that the numerical  value of the coefficient is 
related  to  the  vertical  variation of the  horizontal  wind and 
the corresponding  variation of the  static  stability. The 
numerical  value  determined in  this way agrees 'well with 
the one obtained  empirically by Cressman [SI and Bolin 

Section 5 generalizes the  results  obtained in sections 
2-4 to a simple  two-purameter model. It *is shown that 
t,l1e simplest way to control the  ultra-long waves in a baro- 
clinic model is to  introduce a mean divergence in the 
t,roposphere. The mean divergence  may in  the first ap- 
proximat,ion be estimated  barotropically  corresponding to 
the well-kno\m fact  that  the mean  motion in  the atmos- 
phere  is  almost  barotropic. 

The influence of an existing  mean divergence in the 
atmospheric  layer  under  consideration on the baroclinic 
instthility  is  investigated  in section 6. The main result 
is t,hst, the mean divergence stabilizes the  shorter waves 
to some extent, beside the effect  of decreasing the retro- 
gression of t,he ultra-long waves considerably. An appli- 
cnt,ion of the  stability  criteria  derived in  this section to 
a. mean cross-section for  the at.mosphere shows that the 
mean atmosphere is ba.roclinically stable at  almost all 
latitudes. 

A justification of certain  approximate  relations used  in 
the  earlier sections is given in sections 7 and 8 of which 
t,he former is concerned with  the  vertical  variation of the 
&tic  stability,  while tho  latter gives  certain  diagnostic 
results of  computatrions of vertical profiles of the vertical 
velocity. 

Any model designed for numerical  prediction of tropo- 
spheric flow pattern must) cont,ain a,n effect which at  least 
expresses the  quasi-stationary  behavior of the  ultra-long 
waves. According to  results obtained by Burger [3] we 

[e]. 
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cannot expect to express 11101.e than  this as long  as we  use 
the vorticity equation as the prognostic equat,ion. One 
possible way of controlling  the  ult~ra-long waves is demon- 
strated in this  paper, where we have  made use of the 
observed barotropic  character of t,hese  waves. Certain 
modificat,ions of the behavior of shorter waves is also 
obtained by this procedure. It is quite likely that a more 
sophisticated introduction of the mean divergence, whicil 
seems to be the  important  quantity,  into a tropospheric 
model may  change the behavior of the Rosshy type of  
waves still more. 
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